趣读网 > 玄幻奇幻 > 埼玉的世界旅行 > 传递模型宇宙公理

传递模型宇宙公理

    传递模型宇宙公理

    泽尔麦的公理...

    cantors-阁楼

    康托尔-阿提卡

    爬进康托尔的阁楼,在那里你会发现大大小小的无限。

    我们的目标是提供一个关于所有数学无穷概念的综合信息资源。

    在GitHub上查看项目纽吉尔德/康托尔斯-阿提卡

    快速导航

    上层阁楼

    中间的阁楼

    下层阁楼

    客厅

    游戏室

    图书馆

    比赛的末名

    来源

    康托尔的阁楼(原址)

    乔尔·大卫·哈姆金斯关于阁楼的博文

    回程机器上的最新工作快照

    策梅洛-弗伦克尔集合论的公理

    公理

    外延性

    空集

    配对

    联盟

    基础(或规律性)

    分离图式

    无穷

    Powerse

    选择

    替换模式

    替换的应用

    历史

    ZFC的一致性

    传递模型

    的最小传递模型

    ZFC

    \ufffd

    -模型

    ZFC

    一致性层次结构

    传递模型和强制

    传递模型宇宙公理

    每个型号的

    ZFC包含的模型ZFC作为一个元素

    不可数传递模型

    具有选择公理的策梅洛-弗兰克尔集合论(ZFC)是集合论者使用的标准公理集合。

    形式语言用来表示每个公理是一阶同等式的(=)在一起用一个二元关系符号,∈,意在表示集合会员资格。

    空集公理和分离模式是被后来更具包容性的公理所取代。

    公理

    广泛性

    集合由其元素唯一确定。

    这是表达形式上作为

    ∀х∀g(∀z(z∈хz∈g)→х=g)

    的”→“可以替换为”“,但是←方向是逻辑的一个定理。

    可选地,公理外延可以作为一个平等的定义,一个不同的axiom可以用在它的位置:∀х∀g(∀α(α∈хα∈g)→∀b(х∈bg∈b))

    意味着具有相同元素的集合属于相同的集合。

    空集

    存在一些集合。

    事实上,有一个集合不包含成员。

    这是正式表达的

    ∃х∀g(g∉х)

    这样一个х是唯一的,这个集合用∅

    配对

    对于任意两组х和g(不一定截然不同)有一个进一步设置z其成员正是集合x和g

    ∀x∀g∃z∀ω(ω∈z(ω=xVω=g))

    这样一个z具有唯一的外延性,表示为{х,g}

    联盟

    对于任何设置х还有一组g他们的成员都是成员中的成员х。

    也就是所有成员的联盟存在一个集合。

    这被正式表达为

    ∀х∃g∀z(z∈g∃ω(ω∈х∧z∈ω))

    这样一个g是唯一的外延,写为g=∪х

    基础(或规律性)

    每个非空集合х有一个与分离的成员х,确保没有集合可以直接或间接地包含自身。

    这是表达形式上作为

    ∀х≠∅∃g∈x¬∃z(z∈х∧z∈g)

    相当于,由选择公理没有无限递减序列

    ···∈х₂∈х₁∈х₀

    分离图式

    对于任何设置a和任何谓词Ρ(х)用ZFC语写的,布景{х∈α:Ρ(х)}存在。

    更详细地说,给定任何

    公式φ带有自由变量х₁,х₂,...,хₙ以下是一个公理:

    ∀α∀х₁∀х₂...∀хₙ∃g∀z(z∈g(z∈α∧φ(х₁,х₂,...,хₙ,z))

    这样一个g,因外延性而独特,并被写成(对于固定集合α,х₁...,хₙ)

    g={z∈α:φ(х₁,х₂,...,хₙ,z)}

    到目前为止,我们还不能证明无限集合的存在。

    也就是(Vω,∈)是前五个公理和无数分离的例子。

    的每个成员Vω是事实上是有限的Vω是遗传有限的集合集合。

    这基本上是的标准模型N

    无穷

    有一个无限集合。

    这被正式表达为

    ∃х(∅∈х∧∀z(z∈х→z∪{z}∈х)

    此时,我们可以定义ω,+,和·在ω,得出···的基本事实ω和数学原理感应开启ω(即,我们可以证明皮亚诺公理是真实的〈ω,+,·〉).但是我们还不能证明不可数集合的存在性。

    Powerse

    对于任何设置х还有一组g成员都是的子集х没有其他元素。

    g是powerset关于х。

    这被正式表达为

    ∀х∃g∀z(z∈g∀ω(ω∈z→ω∈х))

    [独一无二的这样g被写成g=P(х).]

    定义有序对(α,b)存在;成为{{α},{α,b}}。

    A关系是有序对的集合,函数是关系f到这样的程度(α,b)∈f和(α,c)∈f暗指b=c

    选择

    主要文章:选择公理。

    这个公理有许多表述。

    这是历史上最多的有争议的公理ZFC

    ∀х[∀g(g∈х→g≠∅)→∃f(domf=х∧∀α∈х(f(α)∈α))]

    由上述公理产生的理论被明确地闸述为策梅洛(1908年)。

    大多数经典数学都可以在这里进行理论,但令人惊讶的是,没有序数大于(ω·2)可以被证明存在于这个理论(至少策梅洛,谁简直忽略了Fraenkel等人发现的下一个公理)。

    替换模式

    如果α是一个集合和所有х∈α有一种独特的y到这样的程度(х,g)满足给定的属性,则此类gs是一套。

    更详细地说,给出一个公式

    φ(х₁,...,хₙ,х,g)以下是替换模式的一个实例:

    forαllαforαllх....._1dotsforαllх_nbig\\[dig(forαllхinαeхists!yuαrр]

    替换的应用

    替换公理证明了每个良序集都是同构于(唯一的)序数。

    证明。

    这足以表明,每一个世界贸易组织〈L,<˪〉每一l∈L,L<ₗ={m∈L:m<˪ᴵ}≅(唯一的)序数f(l)。

    固定l∈L,l最不反例。

    然后f定义于L<ₗ并且由替换,ran(f⨡Li)是一组序数

    A。

    根据序数和顺序的基本事实,很容易看出A是一个序数α。

    如果l是的继任者L工然后

    L<ₗ≅α+1。

    如果是一个限制L,那么

    L<ₗ≅α.□

    ∀x∃α(x∈Vα)

    对于所有序数α,ℵα存在(即对于每个α至少有

    α+1——很多无限红雀)。

    此外,替换公理也证明了分离,进而是空集公理。

    此外,沿用幂集公理证明了配对公理。

    历史

    有待扩大。

    ZFC的一致性

    断言Con(ZFC)这个理论断言ZFC是一致的。

    这是一个复杂的断言Π⁰₁在算术中,因为它断言每个自然的数不是矛盾证明的哥德尔码ZFC。

    因为哥德尔完备性定理,断言相当于断言该理论ZFC有一个模型〈M,∈〉。

    一个这样的模型是亨金模型,内置于任何完全一致的Henkin的语法过程中理论延伸ZFC。

    一般来说,人们不能假定∈是实际的集合成员关系,因为这将使型号a的传递模型ZFC,它的存在是一个比Con(ZFC)

    哥德尔不完全性定理意味着如果ZFC是一致,那就不能证明Con(ZFC),所以这个公理的加法严格强于ZFC一个人。

    该表达式Con²(ZFC)表示断言Con(ZFC+Con(ZFC)),并迭代这个更一般地说,人们可以考虑这样的断言Conα(ZFC)每当α本身就是可表达的。

    传递模型

    ZFC的传递模型是传递集M,使得结构〈M,∈〉满足集合论的所有ZFC公理。这样一个模型的存在严格强于Con(ZFC),强于迭代一致性层次,但弱于世俗基数的存在,即Vκ是ZFC模型的基数κ,其中Vk是ZFC的模型,因此也弱于不可访问基数的存在。

    不是所有ZFC的传递模型都具有Vκ形式,因为如果存在ZFC的任何传递模型,那么通过Lowenheim-Skolem定理和Mostowski坍缩引理,存在这样的可数模型,并且这些模型从不具有形式Vκ。

    然而,ZFC的每个传递模型M都提供了一个集合论论坛,人们可以在其中观察几乎所有的经典数学。

    在这个意义上,这样的模型是普通集合论结构无法访问或无法访问的。

    因此,ZFC的传递模型的存在性可以被视为一个大的基本公理:它表达了一个大性的概念,并且这样的模型的存在在ZFC中是不可证明的,并且具有严格超过ZFC的一致性强度。

    ZFC的最小传递模型

    如果有任何传递模型M关于ZFC,那么Lᴹ,的计算出的可构造宇宙M也是的传递模型ZFC事实上,它有这样的形式Lη,在哪里η=ht(M)是的高度M。

    这最小传递的的模型ZFC是模型Lη,在哪里η是最小的,这是一个模型ZFC。

    这个论点只是给定表明,最小传递模型是所有其他模型的子集的传递模型ZFC

    它的高度小于最小的稳定的序数虽然稳定序数的存在在ZFC和传递模型的存在是不是。(马多尔,2017年)

    ω-模型ZFC

    一;一个ω-型号关于ZFC是···的模型ZFC谁的自然数的集合与实际的自然数是同构的数字。

    换句话说,一个ω-模型是没有非标准自然数,尽管它可能

    有非标准序数。(更一般地,对于任何序数α,安α-模型有至少有根据的部分α。)的每个传递模型ZFC是一个ω-模型,但后一个概念是严格的更弱。

    一致性层次结构

    的存在ω-的型号ZFC并且暗示Con(ZFC)当然,还有Con(ZFC+Con(ZFC))和迭代一致性层次结构的很大一部分。

    这简直是因为如果M╞ZFC并且具有标准的自然数,然后M同意Con(ZFC)持有,因为它有相同的就像我们在环境背景下做的那样。

    因此,我们认为M满足ZFC+Con(ZFC)因此我们相信

    Con(ZFC+Con(ZFC))。

    它再次得出结论M同意这一点一致性断言,所以我们现在相信

    Con³(ZFC)。

    模型M因此同意,所以我们认为

    Con⁴(ZFC)以此类推,只要我们能够以这样的方式描述顺序迭代M正确地解释它们。

    的每个有限片段ZFC允许许多传递模型,作为反射定理

    传递模型和强制

    集合论的可数传递模型在历史上被用作形式化的便捷方式强制(force的现在分词形式)。

    这样的模型M使强迫理论变得方便,因为一个人可以很容易证明对于每一个偏序Ρ在M,有一;一个M-通用过滤器G⊂Ρ,只需枚举的密集子集Ρ在M以可数的顺序〈Dₙ│n<ω〉,并构建一个降序序列р₀≥р₁≥р₂≥···,与рₙ∈Dₙ。

    该过滤器G由序列生成的是M-普通的。

    出于一致性证明的目的,这种形式化的方式效果很好。

    展示Con(ZFC)→Con(ZFC+φ),修复

    一个有限的片段ZFC并且与适当的可数传递模型一起工作大碎片,产生φ中包含所需的片段迫使它延伸。

    传递模型宇宙公理

    这传递模型宇宙公理断言每个集合都是的传递模型的元素ZFC。

    这个公理使一个比更强的声明费夫曼理论,因为它被断言为单个一阶索赔,但弱于宇宙公理,声称宇宙有这样的形式Vκ为难以接近的红衣主教κ

    传递模型宇审公理有时在非的背景理论ZFC,而是的ZFC山口,省略了幂集公理,以及断言每个集合都是可数的。

    这样的企业相当于采用后一种理论,不是作为数学的基本公理,而是作为背景元理论来研究多元宇宙透视,调查各种实际的集合论宇宙,完整的传递模型ZFC,涉及一个另一个。

    每个型号的ZFC包含的模型ZFC作为一个

    元素

    每个型号M关于ZFC有一个元素N,它认为集合论语言中的一阶结构的模型ZFC从外部看M。

    这一点在的情况下M是一个ω-型号关于ZFC,因为在这种情况下M同意ZFC是一致,因此可以建立一个亨金模型ZFC。

    在···里剩下的一个案例,M有非标准的自然数。由反射定理应用于M,我们知道Σₙ的片段ZFC在模型中是正确的VᵦᴹM,对于每一个标准的自然数字n。

    因为M无法确定其标准切割,因此肯定有一些不标准n为了什么M有些人认为Vᵦᴹ满足(非标准)Σₙ的片段ZFC。

    因为n是非标准的,这包括完整的标准的理论ZFC,根据需要。

    前一段提到的事实有时会被一些刚开始的集合论者发现令人惊讶,也许是因为这个结论天真地似乎与可以有模型的事实相矛盾。

    ZFC+¬Con(ZFC)。

    矛盾解决了,然而,通过意识到虽然这个模型N里面的M实际上是完整的模型ZFC,模型M不需要同意这是一个的模型ZFC,在这种情况下M有不标准的自然数以及由此而来的非标准长度公理ZFC

    不可数传递模型

    回想一下,罗文海姆-斯科莱姆定理和莫斯托夫斯基折叠引理表明如果有一个ZFC的传递模型(或其他集合论),那么有一个可数的这样的模型。

    这意味着L每个不可数的传递模型是ZFC+的模V=L+有可数ZFC+的传递模型V=L还有可数的传递模型这个理论的高度肯定比最小模型高。

    同样,也有主张任何数字的理论传递模型不同高度的可数传递模型ω₁(其含义取决于型号:通常ω₁ᴹ¹≠ω₁ᴹ²)

    此外,还有传递模型主张存在的理论α的可数传递模型ZFC+有ω₁ZFC的可数传递模型不同的高度不同的高度等等。

    因此,如果有一个不可数传递模型,那么有“真的非常多”(在“etc”暗示的非正式意思。)可数传递的模型,它们是无限的ω₁(否则他们可以没有ω₁高度不同)。

    假设在V我们有一个基数高度的传递模型κ。

    我们可以把每一个不可数的继任者变成红衣主教λ⁺≤κ到···里面ω₁通过强迫(在V[G]).在···里V[G],传递模型在以下方面是无界的ω₁ⱽ[ᴳ](=(λ⁺)ⱽ≤κ)

    a的可构造宇宙传递模型(Lₕₜ₍ᴍ₎)是ZFC+的典范V=L而且它是的一个元素L这是常见的V和V[G]。

    所以模型ZFC+V=L在...方面不受限制(λ⁺)ⱽ在V。他们中的一些人基数的高度λ而且他们“非常多”。

    因此,如果存在基数高度的传递模型κ,那么就有“非常多”的高度传递模型所有基数λ<κ

    特别是,ZFC的模型(和ZFC+ZFC的模型)是无限的等等。)是无限的Vκ为世间的κ,就像在Vκ为难见到的κ有世俗的,世俗的,超世俗的等等。

    红衣主教。

    参考

    1.马多尔博士(2017)。普通人的动物园。

    主图书馆

    该项目由维护纽吉尔德

    托管在GitHub页面

温馨提示:按 回车[Enter]键 返回书目,按 ←键 返回上一页, 按 →键 进入下一页,加入书签方便您下次继续阅读。